Calculus
Thamas pg 169, 2-12all, 14,16,22,24,25
-2) $s(t)=6 t-t^{2} \quad[0,6]$
a) $\begin{aligned} & s(0)=0 \\ & s(0)=0\end{aligned}$ displanement $=0_{m}$

$$
\text { ave velacity }=\frac{010}{6+0}=0 \mathrm{~m} / \mathrm{sec}
$$

b)

$$
\begin{aligned}
& V(t)=6-2 t \quad a(t)=-2 \mathrm{~m} / \mathrm{s}^{2} \\
& v(0)=6 \mathrm{~m} / \mathrm{s} \\
& V(\beta)=-6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) $V(t)=6-2 t=0$

$$
\begin{aligned}
& =6-2 t=0 \\
& 6=2 t \quad a t+3 \mathrm{sec} \\
& t=3
\end{aligned}
$$

3) $s(t)=-t^{3}+3 t^{2}+3 t \quad[0,3]$
a) $s(0)=0$ $5(3)=-9$

$$
\text { ark velocity }=\frac{-9-0}{3-0}=-3 \mathrm{~m} / \mathrm{sec}
$$

b)

$$
\begin{array}{ll}
v(t)=-3 t^{2}+6 t-3 & a(t)=-6 t+6 \\
v(0)=-3 \mathrm{~m} / \mathrm{sec} & a(0)=6 \mathrm{~m} / \mathrm{s}^{2} . \\
v(3)=-12 \mathrm{n} / \mathrm{sec} & a(\beta)=-12 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

c)

$$
\text { c) } \begin{aligned}
v(t)= & -3 t^{2}+6 t-3=0 \\
& -3(t-1)^{2}=0
\end{aligned}
$$

6) ${ }^{2}$

$$
\begin{array}{ll}
v(t)=t^{2}-4 t+3 & a(t)=2 t-4 \\
0=(t-3)(t-1) & 9(1)=-2 \\
1 \mathrm{sec}, 3 \mathrm{sec} & 9(3)=2
\end{array}
$$

$1 \mathrm{sec}, 3 \mathrm{sec}$
b) Formant $[0,1)$
back $(1,3)$
Foruad $(3, \infty)$
4) $s(t)=\frac{1}{4} t^{4}-t^{3}+t^{2}[0,3]$
a) $S(0)=0$

$$
\begin{aligned}
& s(0)=0 \\
& s(3)=2.25
\end{aligned}
$$

$$
\text { ave velpeity }=\frac{2,25-0}{3-0}=75 \mathrm{~m} / \mathrm{sec}
$$

b) $v(t)=t^{3}-3 t^{2} r 2 t$

$$
v(0)=0 \mathrm{n} / \mathrm{s}
$$

$$
u(3)=6 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& a(t)=3 t^{2}-6 t+2 \\
& a(b)=2 \mathrm{~m} / \mathrm{s}^{2} \\
& a(3)=11 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
& v(t)=t^{3}-3 t^{2}+2 t=0 \\
& t(t-1)(t-2)=0 \\
& \text { at } 0 \operatorname{lsec}, 1 \sec , 2 \sec
\end{aligned}
$$

5) $s(t)=t^{3}-6 t^{2}+9 t$
a)

$$
\text { a) } \begin{array}{ccc}
v(t)=3 t^{2}-12 t+9 & a(t)=6 t-12 \\
0=3 t^{2}-12 t+9 & \\
0=3(t-3)(t-1) & a(1)=-6 \mathrm{~m} / \mathrm{s}^{2} \\
\{1 / 3\} & a(3)=16 \mathrm{~m} / \mathrm{s}^{2} \\
& & \\
a(t)=6 t-12=0 & v(2)=3(2)^{2}-12(2)+9 \\
6 t=12 & t-3 \mathrm{~m} / \mathrm{s} \\
t=2 \text { sec } & \text { speed } 3 \mathrm{~m} / \mathrm{s} 7
\end{array}
$$

speed $/ 3 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \text { on }(0,1) \\
& s(0)=0 \\
& s(1)=4
\end{aligned}=4 \quad \begin{aligned}
& 0 n(1,2) \\
& s(1)=4 \\
& s(2)=2)
\end{aligned}=\mid-21=2 \text { toted } 1=6
$$

Aqualy sincel is a double robt, the object changiges diriection

c) decreosing on $(0,2)$
increasing on $(2, \infty)$
8) $s(t)=24 t-.8 t^{2}$
a)

$$
\begin{aligned}
& V(t)=24-1.6 t \\
& a(t)=-1.6
\end{aligned}
$$

b)

$$
\begin{aligned}
& 0=24-1.6 t \\
& 1.6 t=24 \\
& t=15 \mathrm{sec}
\end{aligned}
$$

c)

$$
\begin{aligned}
s(15) & =24(15)-.8(15)^{2} \\
& =180 \mathrm{~m}
\end{aligned}
$$

d)

$$
\begin{aligned}
& 90=24 t-.8 t^{2} \\
& .8 t^{2}-24 t+90=0 \\
& \{4.393,25.607 \xi \\
& 4.393 \text { sec }
\end{aligned}
$$

e) $30 \mathrm{sec}(15 \times 2)$
-11)

$$
\begin{aligned}
& S(t)=179-16 t^{2} \\
& v(t)=-32 t \\
& \text { speed }=1-32 t \mid \\
& a(t)=-32
\end{aligned}
$$

b) $0=179-16 t^{2}$

$$
\begin{aligned}
16 t^{2} & =179 \\
t & =3.345 \mathrm{sec} 1
\end{aligned}
$$

c) $v(3.345)=-32(3,345$ $=-107.033 \mathrm{~m} / \mathrm{s}$
9)

$$
\begin{aligned}
s(t) & =15 t-\left(\frac{1}{2} g\right) t^{2} \\
v(t) & =15-9 t \\
0 & =15-g(20) \\
20 g & =15 \\
g & =-75 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

| Moon | Earth |
| :---: | :---: |
| $s(t)=832 t-26 t^{2}$ | $s(t)=832 t-16 t^{2}$ |
| $v(t)=832-5.2 t$ | $v(t)=832-32 t$ |
| $0=832-5,2 t$ | $0=832-32 t$ |
| $5,2 t=832$ | $32 t=832$ |
| $t=160 \sec$ | $t=26 \mathrm{sec}$ |

a)

$$
320 \mathrm{sec}
$$

$$
\begin{array}{rl}
s(t)=832 t-26 t^{2} & s(t)=832 t-16 t^{2} \\
v(t)=832-5.2 t & v(t)=832-32 t \\
0=832-5,2 t & 0=832-32 t \\
5,2 t=832 & 32 t=832 \\
t=160 \mathrm{sel} & t=26 \mathrm{sec}
\end{array}
$$

b)

$$
\begin{aligned}
s(160) & \left.\left.=832(160)-26(160)^{2} s(26)\right)=832(26)-16(26)\right)^{2} \\
& =\frac{66560 \mathrm{Ft}}{12606 \mathrm{mi}}=\frac{10816 \mathrm{Ft}}{2.018 \mathrm{mi}}
\end{aligned}
$$

12) 

$$
\begin{aligned}
v(\theta, t) & =9.8 \sin (\theta) t \\
v\left(90^{\circ}, t\right) & =9.8 \sin 90^{\circ} t \\
& =9.8 t
\end{aligned}
$$

b) $a(t)=9.8$
14) left $(2,3) \cup(5,6)$
right $(0,1)$
stationary $(1,2) \cup(3,5)$


$$
30 t-3 t^{2}=\frac{d t}{d y}
$$

$$
30-6 t=\frac{d^{2} t}{d y}
$$

22) 

$$
\begin{aligned}
& b(t)=10^{6}+10^{4} t-10^{3} t^{2} \\
& b^{\prime}(t)=10^{4}-2 \cdot 10^{3} t \\
& b(0)=10^{4} \\
& b(5)=10^{4}-10 \cdot 10^{3}=0 \\
& b(10)=10^{4}-2 \cdot 10^{4}=-10^{4}
\end{aligned}
$$

24) $y(t)=6\left(1-\frac{t}{12}\right)^{2}=6\left(1-\frac{t}{12}\right)\left(1-\frac{t}{12}\right)$
a) $\begin{aligned} \frac{d y}{d t}=\frac{1}{12} t-1 & =6\left(1-\frac{t}{6}+\frac{t}{1101}\right)\end{aligned}$
b) Fastest at $t=0 \ldots=-1$ slowest at $t=12,=0$
c)

25) $V=(4 / 3) \pi r^{3}$
a) $\frac{d V}{d s}=\left.4 \pi r^{2}\right|_{2} 4 \pi(2)^{2}=16 r$
b)

$$
\begin{array}{r}
4 \pi(2.2)^{2}=\begin{array}{r}
19.36 \pi \\
3.36 \pi
\end{array} ~
\end{array}
$$

